There are multiple forces at work in a converging rocket nozzle:
The exhaust is pushed outward faster since the hole is smaller, giving the rocket extra thrust
The exhaust hits the wall of the nozzle as it gets thinner, braking the rocket
These two effectively cancel out, which is why the actual effect of making the nozzle thinner/converge is that it increases the back pressure within the engine (constricted space, smaller hole), essentially (idk how) increasing the efficiency of the fuel burning.
However, when the nozzle gets too thin, the exhaust becomes faster than its speed of sound. Since the pressure travels at the speed of sound, it can now not actually get back into the engine anymore. So that’s the limit of how thin you can make the nozzle. The pressure has to get back into the engine to have its effect, so you can’t make the exhaust travel faster than its speed of sound.
If any of this sounds wrong to anyone, let me know, I’m not an expert in this.
Wow, TIL that the speed of sound has this equivalence
It’s why de Laval nozzles have their shape :)
I don’t get it. Care to explain?
There are multiple forces at work in a converging rocket nozzle:
These two effectively cancel out, which is why the actual effect of making the nozzle thinner/converge is that it increases the back pressure within the engine (constricted space, smaller hole), essentially (idk how) increasing the efficiency of the fuel burning.
However, when the nozzle gets too thin, the exhaust becomes faster than its speed of sound. Since the pressure travels at the speed of sound, it can now not actually get back into the engine anymore. So that’s the limit of how thin you can make the nozzle. The pressure has to get back into the engine to have its effect, so you can’t make the exhaust travel faster than its speed of sound.
If any of this sounds wrong to anyone, let me know, I’m not an expert in this.